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THE EFF’ECTS OF OPTICAL SMOOTHING TECHNIQUES ON
FILAMENTATION IN LASER PLASMAS

I. Introduction
The production of nniform laser illumination has been a fundamental concern in the l=er-fusion

community for many years. The quality of the Iaser-plmma coupling and symmetry of the pellet
implosion are dependent on the illumination uniformity. Illumination uniformity analysis can be
,divided naturally into large and small scale categories. Large scale illumination uniformity is
primarily determined by the gross intensity profde of the incident laser beams, the inter-beam energy
balance, and the geometry of the targeting on the pellet. This aspect of the uniformity problem has
been previously addressed, and thel \esults indicate that the gross uniformity can probably be
controlled to within tolerable limits ‘ . The detailed structure of the individual laser beam is
responsible for small scale nonuniformities, and ia more di.fi3cult to suppress or control. The laser-
plasma fdamentation instability is seeded by these small scale nonuniformities and tends to increase
the nonuniformity, exacerbating the problem.

The fdmnentation instability is a nonlinear optical effect that has been studied for mzuiy years.3
.Filamentation is caused by perturbations or nonuniformities in light that produce local changes in the .
&lelectnc constant, or index of refraction, of a medium. If the change in the dielectric constant is
positive in regions of higher intensity, a focusing lens is produced there. This increases the
perturbation and starts the instability. The instability will saturate when the focusing tendency of
the intensity hot spot is balanced by diffraction, but at this point the filament intensity may be
orders of magnitude higher than the initial perturbation.

In laser plasmas, there are a variety of mechanisms that give rise to an intensit~-~ependent
dielectric constant and produce fdamentation. Amc+ng these are ponderomotive force effects ‘ , plasma
heating or thermal effects6, and relativistic effects. The ponderomotive and thermal effects change
the dielectric constant by expelling the plasma density from the high intensity region; these
mechanisms are active in laser-fusion plasmas. The relativistic mechanism affects the dielectric
constant via the increase in electron mass from the relativistic quiver velocity in the electromagnetic
wave; this is generally unimportant at the intensity ranges used in laser fusion applications.

Intensity hot spots caused by Lamentation of the laser can seriously degrade the laser-plasma
coupling, and may affect the ablation pressure uniformity. The high intensity filaments can induc~
other harmful laser-plasma instabilities, such as stimulated Raman scattering or two plasmon decay.
Since fdamentation has one of the lowest instability thresholds, and produces conditions favorable for
other instabilities, it effectively lowers the thresholds and increases the growth rates of these other
instabilities. These instabilities degrade the coupling quality by producing superthermal electrons
which can preheat the fuel and spoil the gain. The enhancement of secondary instabilities also
obscures our understanding of the underlying physics of the laser-plasma interaction: since
filamentation is itself hard to measure directly, it is even more difilcult to diagnose the effect of
fdamentation on other phenomena. There is also the concern that the laser filaments may produce
ablation pressure nonuniformities which seed or drive the Rayleigh-Taylor instability in the imploding
pellet.

To avoid the fdamentation instability, as well as to provide some control over the gross laser
beam profde, new optical smoothin j techni uq es have been developed. One of these is the induced
spatial incoherence (1S1) method ; another is the random phase screen (RPS) method .lO’ll
Experimental results using t~2se techniques are incomplete and are still under investigation. The 1S1
results to date are favorable ; &lagnostics of most laser-plasma instabilities (e.g., 2U0, $Wo/~, Ram an
scatter, SBS scatter) show significant reductions when compared to results with an unsoothed beam.
The RPS method ha~3 also shown some reduction in SUo/2 emission when used in a spherical
illumination geometry.

ManuscriptappovedOctober7, 1987.
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The implementation of each of these optical srnoothmg methods involves trade-offs. The RPS
technique requires fast focnsing optics to work effectively, but can be implemented with only minor
modMcationa to existing lasers. ISI promises to be a more robust smoothing technique, but requires
a broadband laser (Au/u - 0.1%). Glass lasers can be converted to run broadband at 1.06pm and
0.53/lm laser wavelengths; for short wavelengths, the KrF laser is an exce~ent candidate for ISI.14

Evaluation of these optical smoothing techniques requires infokrnation on how the filamentation
instability ia modified by the incident Imer beam structure. Experimental data on filamentation has
been sp-e or nonexistent because of difilculties “m controlling and diagnosing both the laser intensity
structure and the plasma conditions, and theoretical techniques are insufficient to handle the
complexity and fionlinearity inherent in the problem. Computational techniques are also severely
tested, especially when modelling 1S1 or RPS. Both 1S1 and RPS require resolution of a large range
of scaleIengths (typically fiwm less than one to a few hundred I=er wavelengths). This requires large
computational meshes, and the resolution constraints invalidate the use of weIl developed ra -tracing

15computational methods, which ignore diffractive effects that are important at the small scaIes.
We will analyse the limitations of optical control techniques and compare these smoothing

methods with traditional (unsoothed) high-power lasers. The paper is organised as follows: in
section II, we describe the construction of a two dimensional, time dependent, laser-plasma
propagation code that includes. both ponderomotive and thermal fdamentation mechanisms. A steady
state version of this code ia alao developed to treat problems without inherent time dependence.
Next, a general analytic perturbation formalism of fdamentation is presented in section HI, and is
extended to account for flamentation of incoherent LSI laaer light. Finally, section IV- presents the
results of the numerical codes for a variety ‘of laser beam profdes, and compares these results to the
analytic predictions.

We wilI show that there is a qualitative difference between thermal and ponderomotive
fdarnentation: fiknents created by the thermal mechanism tend to bunch together and cause greater
nonuniformity than ponderomotive fdaments, which interact “less. This clustering cai result in a
different saturation mechanism for thermal fdamentation. We also find that the RPS optical
smoothing method is dependent upon the use of f=t optics (F/# :5), and that the 1S1 method is
capable of suppressing fdamentation effects and ptividing smooth tim+averaged intensity distributions
using moderate laser bandwidth. In spite of the smoothing effects, 1S1 can also produce noticeably
enhanced intensities in the plasma. In laboratory conditions, however, 1S1 is shown to suppress
iilamentation effects more completely than RPS or generic laser beams. At longer laser wavelengths
fdamentation occurs readily, and optical smoothing techniques suppress, but do not eliminate, the
filamentation tendency. The best results for all optical methods are found with short-wavelength
(~om0.25~m) kumr-irradiated plasmas, where high absorption helps to reduce filamentation. In these
plasmas, the ISI technique can completely eliminate filamentation.

2



IL Governing Equations and Numerical Description.
In this section, we will develop the basis of the numerical scheme and discuss the relevant

physics involved. We fmt derive the equations describing the laser light propagating in a plasma in
which the dielectric constant has been perturbed; then we derive the equations describing the
perturbation of the dielectric constant caused by changes in the plasma density responding to the
laser light. We will treat two mechanisms respomible for plasma density changes. The fwst is the
ponderomotive force, which directly expels the plasma from regions of high laser intensity. The
second is thermal conduction dominated pIasma heating, which creates temperature (and thus pressure)
gradients and dso forces the plasma out of high intensity regions.

The numerical algorithms that handle the governing equations will also be outlined in this
section. Two versions of this code have been created- The first is time-dependent and is used
primarily for the 1S1 calculations. The other model solves the equations in a quasi-steady state
approximation , and is used to calculate fdarnentation effects when the incident light is stationary in
time.

The analysis in this paper uses a two-dmensional (2D) cartesian description of the interaction.
The spatial growth rates and amplii5cation wavennmber-spectrum are very similar in two and three
dimensions, as we will show in section III. The 2D numerical analysis also reduces computational
memory and time constraints to manageable levels, and allows a large region of parameter space to
be covered by using many simulations. Cartesian rather than cylindrical geomet~ is needed to study
fdarnentation in 2D, since cylindrical geomet~ artificially favors on-=cis &~$ng and cannot equitably
treat the random-phasing required in optical smoothing simulations ‘ . The main difference
between the 2D calculations and three-dimensional (3D) calculations occurs in the peak intensity
values: 3D fiIaments can typically reach much higher peak intensities. However, rapidly varying
intensity profdes may restr~ large peak intensities in SD: preliminary results of 3D
ISI show that the light energy dutribution is comparable to 2D sirnulations.18
A. Light Propa~ation

The laser propagation and fdamentation will be described by the parabolic” wave
to the h4axwell wave equation. Starting wi~h the Maxwell equations, we assume that
of the electric field is small &“~c/6< <k:), and iet ~~=0. The electric field is
fast and slow space-time scales with the substitution: E(x,z,t) = l/2[~(x,z,t)exp{-ijkfidz +- i~at}+c.c.].

simulations of

approximation
the divergence.
separated into

~~x,s,t) .is the yave envelope of the electric field, k-(z) is the (real) laxer wav~number

(k:!z)=~:~or(’)m ~oris the real part of the unperturbed “plasma dielectric constant (~o=~or+icoi,

Wd clr(z)=~-n (z)/n , where ne(z) is the unperturbed plasma electron density, and nc is the plasma
cr~t~ca dens~ty~. (’l!he sub.scr~pt ‘o’ appended to a variable means that it is evaluated at the
background or unperturbed state.)
laser wavelength and frequency, the

K the wave envelope ‘#(x,z,t) varies SlOWIYwith respect to \&
M-en wave equation reduces to the parabolic wave equation:

“2
(+ (E(z,x, t)-eor(z)) - i~ko] * (2.1)

c

4where 6 z,x, t)= l-~2(z,x,t) /&-i~2(z,x,t) ~ei(z,x,t)/# is the fully perturbed plasma dielectric
?

constant;
~.p=4~e ne/me is thpeelectron p asma frequency, and Vei is the electron-ion collision frequency. (The

44
tune derivative (i3~ ~t ~can be formally eliminated by transforming to the frame moving with the
pulse group velocity ‘ , with the variable substitution t’=t-s/v . In practice, one can simply ignore
the time derivative term if the transit time of the propagatio~ region is much smaller than any
characteristic time for changes in the dielectric constant.) We normalize all spatial coordinates by
the laser vacuum wavelength, ko, and define the transformation (using the spatially normalized
coordinates):

~
‘-1 (2760i (z’)~ = + exp$ ~zn k

where ~=cko(z)/~o, and Coi=-U~o(Z) Veio(Z)/U~
dielectric constant. This transformation accounts

ig the imaginary part
for ambient absorption

(2. 2)

of the unperturbed
and swelling due to

pl~ma
density

.
3



inhomogeneity. Redefining the variable in the z direction as ~= Szdz’/k(z’), we arrive at the
parabolic wave equation in canonical form:

(2.3)

where d~=~ (~,x,t)-~(z) is the change in the plasma dielectric constant induced by the laser EM field.
The effect of the plasma on the propagating field is concentrated in this term. For the cases of
interest here, this induced change is entirely due to changes in the plasma density (6c=
(n(z)-n(7,x,t)) /nc), and ia found by solving the equatione governing the pl~ma response to the laser.

The parabolic wave equation (2.3) is soIved numerically on a mesh in x-z(~) space, with time

y~:: ~y!$d~:;;efi=-e’””
The numerical algorithm consists of a split-step fast-Fourier-

. To accommodate the Fourier transform technique, the computational
mesh is periodic and equally spaced in the transverse (x) d’iiection.

The periodicity of the mesh affects the manner in which the initial laser field is numerically
constructed. The focusing optics separate the incident laser beam imto many individual beamlets,
which are focused onto a target where they overlap one another. In the code, these overlapped
bearnlets are approximated as plane waves incident on the plasma at different angles; this is a good
approximation in the center of the focal spot. For a high-power laser without optical smoothing,
these beamlets correspond to light from dfierent sections of the beam, and they will be be slightly
incoherent with respect to one another (depending upon the degree of aberration in the beam). In
the case of the LSI and RPS smoothing techniques, these beamlets are incoherent with respect to one
another, and correspond to the light coming horn difYerent echelon steps or phase shift regions of the
rmdom ph~e screen.

The incident wave field is constmcted on the Fourier transformed plasma mesh which has the
spacing AkX=2x/X is the length of the mesh in the x direction. Each beamlet has
a unique wavenum~~’kwh~e &-&number of the i-th phne-wave bearnlet incident at angle di has a

‘l(d[i-(l+Nb)/2 ]/f),k component kxi=kos;d..
%

The Wgles Oi are given by the relation OiEtan
w ere d ia the width of t’he echeIon step, phase shift area, or spatial coherence distance; f is the
focal length of the lens, and i varies from 1 to Nb (Nb is the number of beamlets used). For
moderat~to-large F/# optics, d is small and tand.ssindi~di. The modes corresponding to the
individual beamlets are then assl~n”d to the nearest po&t on the k-space transform mesh; the mesh
spacing Akx=2~/Xmu of the Fourier transformed mesh corresponds to an spatial angular resolution
A(?=Ao/x The real and imaginary parts of the electric field of each beamlet at wavenumber k .
are then =~d to the value at the assigned mesh point. In general, the electric field at each ~
mesh point at s=O ie independently aeeigned a random amplitude or phase (or both) depending upo~
the type of beam being d.rmdated. “For ISI simulations, the phases of each bearnlet are chosen to be
uniformly random and their amplitudes are selected with a Gaussian probability distribution. For
RPS and other lasers, we typically use constant amplitude but uniformly random-phased modes.
(More detail on the construction of laser profiles is given in section IV). The laser electric field
E(x,z=O,to) ia then found by inverse Fourier transforming this distribution. For the 1S1 simulation,
this process is repeated again after every interval tc to produce a new randomly generated E field.
B. Plasma Response

The nonlinear change in the dielectric constant, d~(x,.z,t, ~”~), is found by solving for the
plaama density using a one-fluid plasma model. The calculation is greatly sirnpliiled by ignoring
fluid coupling to itself along the direction of propagation of the l~er (z axis). This approximation is
valid when the plaema gradients along the z-axis are much smalIer than gradients perpendicular to
the s-axis, and is consistent with the slowly-varytig-envelope approximation used previously for the
laser electric field. The approximation also ignores fluid flo~3 aIong the laser axis (which ie typically
supersonic in the underdense regions of laser-fusion plasmas ). The effect of flow on filamentation
hae been considered eisewhere24 and can be ignored if the flow gradients are smalI and the fluid flow
velocity iS not too supersonic. The presence of counterpropagating axial supersonic flow reduces the
amount Offdament ation growth, so the results presented here may overestimate fdament ation.

The continuity and momentum equations for the quasi-neutral one-fluid plasma in the presence
of the Imer ponderomotive force are linearized,

20
and combined to give a driven ion-acoustic wave

equation for the electron density :
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(2. 4)

where a= Ze2/4memi~~ and C~=(ZTe+Ti)/mi, and a phenomenological damping term V has been
irduded. This equation describes the plasma responding as an ion-acoustic wave driven by
temperature (pressure) gradients (first term on the right) and the ponderomotive force (second term).
The variable ln(n ) preserves the correct nonliiear isothermal steady state behavior, and ensures
positivity of the $ensity in the transient regimes. The term ‘Vlln(ne)v C: is ignored, as it is
second order in the perturbation. 1!For all of the cases considered in t is paper, the condition
an> <<1 is vali~ typical values of ~n~nm in the time-dependent calculations are less than ‘5%.
(For & laser light, hot-spots shift randomly on the order of the coherence time (~psec), which is
faster than than the density can respond. Intense ISI fdaments @e not precluded, though, since even
shallow density chaxmels can produce substantial re&action over long propagation dist antes. For long
puke non-ISI lasers, qu~i-steady state density equilibration can occur, and a different, nonlinear
steady-state formulation for the electron density is used. This algorithm will be described later.)

The ion temperature is assumed to be constant in time, since the ion-electron energy
equilibration time is typically on the order of nanoseconds in these plasmas, and this is much longer
th~ timwcales of interest. The background ion and electron temperatures are assumed to be equal.
(The model and results are insensitive to the ratio of background electron-to-ion temperatures, and in
any case the results can be easily renormalized to account for different ratios. ) The perturbed
electron temperature is then found by solving the relevant energy balance equation:

3
‘T =Feat. e - ~1”~+ S(ne,Te) (2.5)

Q is the electron thermal heat flux -X~lTe, S is the Joule heating source given by ~b~”~, Se(Te)
is the electron therrd conductivity (iicluding anY flux-lirding effects), and ‘b (ILe,Te) is the inverse
bremsstrahlung absorption coefficient. Compression effects and electron-ion energy coupling are ignored
since they are much smaller than the terms” included in (2.5) for the cases studied here.

The equations (2.4) and (2.5) can be put into a form that depend on dimensionless quantities
describing the

7P =

7P

7T1z

magnitudes of reievrmt physical phenomena. We define:

ponderomotive pressure

plasma thermal pressure

e2p*q
1 v’

00 0 ~~ [pm] 10 [1014 Az]
= — — ~ .00933

4meu:Te0(1+$ 4(1+$ V:e ~(1+$ Teo [kev]

(2.6a)

thermal conduction transit time across laser wavelength dimensions

ion-acoustic transit time across laser wavelength dimensions

~ Csoneoc ~ ~ ~5x10-
/n ) Id ~ ~+1 1/2

7T1=
5 ‘neo c

2 Keouo - “ H (2.6b)
T~o [kev] A. [pm] ~ T
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inverse bremmstrahlung heating rate

‘tT2 z
thermal conduction cooling rate across laser wavelength dimensions

7T2 =

where A and Z are the.plasma ion mass and charge, ]nA is the Coloumb logarithm, and
f(Z)= (Z+.24)/(1+.24Z). 25- The subscript ‘o’ again refers to evaluation of the variable at an
unperturbed or initial value.

7T2 is the scaling const=t of the steady-state temperature perturbation in the pIasma, which
is the active force in the thermal fdamentation mechanism. The sensitive dependence upon plas a
temperature is due to the temperature -3~21ependencies of the electron-ion collision frequency (NTe

5~2). Aa the temperature rises,and ekctron thermal conductivity (mTe both the decreasing collision
fkequency and increasing thermal conduction act together to smooth temperature gradients and quench
the mechanism. For this reason thermal filamentation is more important in cooler dense plasmas,
such as those created by short wavelength (~o<0.5~m) irradiation. The ponderomotive force, on the
other hand, is more important. in long wavelength Imer irradiation of plasmas (ypeIo~~/To) because
of its expIicit dependency on laser wavelength.

Another important dtiference between these two types of filamentation is the mechanism by
which they couple the Isser light to the Iesma

-5
The ponderomotive force is almost instantaneously

felt by the phsma (on times of order U. ), and is stronger for hot spots with shorter scalelengths.
In eontr~t, the thermal forces in the plasma require the establishment of temperature gradients. The
temperature distribution is created on a characteristic time scale that is longer for larger scalelengths
(7NneL2/xc), so the force is transmitted more slowly for large scaIe filaments. At shorter
scalelengthsj the force is suppressed by the diffusive thermal conduction smoothing. Thus, thermal
forces are greatest at large smdelengtha and long times, ss opposed to ponderomotive forces which are
greatest at short scalelengths at all times. These characteristics are the basis of the qualitative
differences in the two fdamentation mechanisms.

Using the quantities (2.6), the plasma response equations (2.4) and (2.5) can be re-written as:

(2.7)

(2.8)

Again, the spatial coordinate x is normalized to the ltuwr wavelength ~fi and the time is normalized
to ~ /C , the ion-acoustic transit time across a laser wavelength. T~e overbar indicates that the
~ .% W
Lana le IS normalized with respect to its initial or unperturbed value, e.g., fie = ne(x,z, t) /neo (z) and

= I(~z,t)/Io(z=O).
In the computer code, the pl~ma variables nc(x,z,t), ane(x,z,t)at, and Te(x,z,t) are defined on

the same {x,z} mesh as the laser electric field. The numerical algorithm for the hydrodynamics of
eqn. (2.7) uses a combination of FFTs and sa analytic solution. A9suming relatively small variations
in the sound speed in x, the driven ion-acoustic wave equation can be Fourier transformed to yield:

[

a2

+ q~ ~+k2 1In(n,) = -k: (7p~?* + (l+\/Z)
;2

T]
‘at x

(2.9)

where q is the ratio of the imaginary to real frequency of the ion acoustic wave, U/k C . (In the
analysis presented here, q is generally taken to be 1/2, in accordance with the signti~c~nt Landau
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damping for Te~Ti). For the purposes of the calculation, the driving terms are assumed to be
approximately constant over the time step used in the code (on the order of a picosecond). The
solution to (2.9) for a source that is constant from to to to+~ is then found analytically:

-kx~/2 a

ln(n [kx,to+r]) = e [[
v [ln(n[to])+ G])%@n(n [g ) + 2

+ ~n(n[to])+G]c..xj- G (2.10)

.
2 12 A

where %= (l-q /4) / kx and G= {7 y ~(k’,t’+~/2)+T( kx,t+~/2)/(1+1/Z) }. This result is inverse
Fourier transformed numerically to yi!ld the plasma density at the advanced time to+r.

The plasma energy balance eqn. (2.8) is solved with a three-point predictor-corrector method
and is subject to the same periodic boundary conditions imposed by the Fourier treatment of the
kuer light and pl=ma density calculations. This can cause problems, since the net energy deposited
by inverse bremmstrahlung at a given axiaI position cannot be lost either by heat flow out of the
system or conversion to axial plums kinetic energy. Under these circumstance, the plasma at any
given axial position will continually gain energy (temperature) as the interaction progresses, in
contrmt to the real system which will reach a quasi-steady equilibrium with laser energy converted to
plasma blowoff and target acceleration. To avoid this unphysical behavior, the spatially averaged

) is subtracted horn the source term of eqn. (2.8) to keepenergy gain (4#~dx’7T2(x’,t’) T(x’,t’)/Xmu
the mean temperature constant. This B equivalent. to assuming that the energy losses (to axial
conduction or flow) are independent of the coordinate x.

A harmonic-mean flux-limited formalism is used for the heat flux

[

x= IVITeI -lx v ~

!l= 1+—fnTevT ) e-1 e
(2.11)

%e is the Spitzer electron thermal conduction coefficient of the plasma and f is a phenomenological
flux-limiter. Anomalous flux limiting in laser plasmas has been implied by indirect experimental
memurements of axial heat flow in the region between the critical density and the ablation surface.
However, the magnitude of flux limiting in transverse heat transport in the underdense region is
speculative at best. The semi-classical value f=O.1 is used here simply to ensure that the heat flux

26 In most of the calculations presented here (and in all ofstays within physically allowed bounds .
the ISI calculations) the heat flux is much smaller than thia limit , so the remdts are insensitive to
the flux-limiter.

For time independent problems (i.e., laser-plasma interactions with non-ISI lasers and pulse
lengths long compared to hydro times), the calculation of the plasma density is simpl#ied. The
solution of
Te(x,t) is

~he steady-state momentum” balance equation for time-independent sources # #(x,z) and

J21fd_ ~xp (_7
J
‘&aC;2(XB,t)vx,~l(d ,Z) ) tne(x, z) = (2. 12)

c: (x, z) P

where C’ is a constant of intcgra~on given by the definition of average density: C’=

$X”)eXP(-7pJdX’CS Vx,# ~). The temperature Te(x,z) is found by iterative solutionn~Xmu/Jdx”C*
o eqn. (2.8) with arbitrary time steps, performed until the solution converges- These separate.,
solutions for TP(x, z) and ne(x, z) are then iterated alternately to obtain a convergent steady-state
solution for both.
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III. Analytic Formulation of Filamentation
Before proceeding with the computational analysis of fdamentation, we present an analytic

treatment of fdamentation that is based upon the perturbation solution of the complete M~well’s
wave equation. The formalism ia daveloped in general terms, then applied to the ponderomotive and
thermal fdamentation mechanisms separately. The general formaliim is also heuristically extended to
include spatially and temporally incoherent 1S1 light. Results for both ponderomotive and thermal
fdamentation of 1S1 light are also presented. In section N, we will then compare results of the
computational and analytic treatments of fdamentation.
A. B~ic theory of Fhrnentation

The formalism used here to describe the scaling of thresholds and growth rates of fdament ation
iS we~ &ab&h~27$25. Perturbation of plane waves in homogeneous plasmas are analyzed using the
exactMaxwell’s wave equation for the electric field and an expansion of the dieIectri ~~1-t ;
terms of the perturbed laser intensity, 6(<@+~2>)ec +~’E06E. Choosing ~= EOX
and assuming the perturbed fieid 6E has the form &oex~[i~ot-kQz)+k z+i(kxx+kyy)]o wh?ere

~ thermal mechanisms:k~<<k~+k~, one fmda a genemd diip~ion relation for both ponderomotnre an

(k:++[&~- k:) - (k:+k;)]= ‘k:k; (3.1)

where 66=aC(~%,~Io+61)/a[dI/Io]; d~=(n/nc)7 for the ponderomotive mechanisq and
d~=(n/n )7T2/[kx+ky] for the thermal mechanism. ~

%
For notational convenience, we define k m a

wavenum er normalized by the laser vacunm wavenumber; i.e., kl=klc/uo). We have assumed 6E
parallel to ~ as this is the fastest growing configuration. For the one dimensional ~ase we ~
ky=o, kx=kl, and assume that the” two dimensional case is confined to kx= k =kl/~2 ; then the
general expression for the instability thxeshoId in N transverse dimensions (where 3=1 or 2) is:

1
-1

i;<[*+Eo 1 (3.2)

For any interaction strength (fi~), there will be some range of unstable perturbation wavelengths of
the incident light intensity. There remains the questions as to whether this range is relevant
(contained in the interaction region), and if so, whether the perturbations hav~ room to grow
the propagation region. The spatial growth rate has a maximum at a value k~~ determined
a root of the equation:

(1+:w!=]’- k$’+%+?=]’+ ‘“ =0
0 0

(3. 3)

where d~’ is dflerentiation of be with respect to (~l)-z. For the ponderomotive mechanism
and for the thermal mechanism d6’= [n/n _]’Y~.. Using these relations in [S.3] yields the

within
by the

f5E’=o,
fastest., . ,.

growing modes and their associated growthc-r~e< for the thermal and ponderomotive cases. The
resnlts are shown in Table ~ they will be compared to numerical solutions later.

Although the fastest growing thermal mode has an infinite wavelength, the growth rate is
approximately constant for kl< <1, which is generalIy the region of interest. Thus, for them@
fdamentati~n, most modes grow at the same rate. IrI contrat, the ponderomotive grQwth rate is ‘kl
for small kl. If the ponderomotive force is strong enough, there is some value of kl at which the
ponderomotive a d thermal growth rates are equal. This point occurs for filaments of size

172 Ponderomotive fda.mentation is dominant for filaments smalIer than this size,~ 00=(7J7 7) m

whe therma??ilamentation is more important for the Larger filaments. This suggests a scenario
whereby the thermal and ponderomotive mechanisms can couple: large wavelength modes can begin to
focus to due thermal fiiamentation, then become dominated by ponderomotive fdamentation when the
fdament becomes small enough.

8
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B. 1S1 and filamentation.
The ISI optical smoothing technique leads to rapid, random fluctuations in the laser intensity.

If we average th-~e fluctu tions over a time t , then the fluctuations compared to the mean are
9 Shce the characteristic172, where t is the c~~!rence time of the laser.proportional to (tc/tavg)

plasma hydrodynamic response time tic much longer than the typical laser coherence time, the plasma
dielectric constant will respond to the tinwaveraged intensity. As a simple way to account for this,

]1/2) for the backgroundwe will substitute this time-averaged intensity perturbation (I [t /t
intensity (l.) in the forrnub for the dielectric response, using a ;ui;ab~v~alue for tavg. After this
substitution, the fdamentation formulas given in the l~t section will be re-derived.

This analysis ignores some effects which may contribute to the suppression or enhancement of
fdarnentation. For instance, the stocha~~ic-like fluctuations in the density will increase the light
scattering and counteract fdamentation. On the other hand, the time average of the intensity
fluctuation is treated linearly, although the interaction ia itself nonline=; this underestimates the
fdamentation. It ia implicitly amumed that corrections due to these effects are small.

The averaging time tavg u taken to be the characteristic time for the fdamentation mechanism
to change the dielectric constant appreciably over the transverse dimensions of the fdament, ~ . For
the ponderomotive mechanism this averaging time is the ion-acoustic transit time of the ill ament,
Al/c. For the thermal mechanism, the av~ging time is the larger of the ion-acoustic transit time
and tie thermal conduction transit time, ne~l/Ke. The ion-acoustic transit time is larger when the
ratio YT A1/Xo (see eqn [2.6b]) is 1- than one.

P1~m~ ‘(7T ‘“l/[T~Ao]) and Iarge fdamemts.

This ratio is largest for cooler, short wavelength
In a worst case (Ao=0.25~m in a CH plasma with

Tq=lkeV, n/’in==0.25) the ion-acoustic time is the dominant averaging time for ~@50Pm. SinCe
this worst-case value of 350~m is hwger than almost all filaments studied here, we will use the
acoustic transit time as the averaging time for both thermal and ponderomotive fdamentation.

The filamentation analysis presented in section 111.A is now repeated, except that the
background dielectric constant depends upon the time averaged intensity perttibation level, instead of
the plane wave intensity. Thus, we substitute Io(tc/tav )1/2 (with t ‘~1/C~), for 10 in the
expressions for the dielectric change, 66, given in section fII.A. For th~v~onderoxnotive mechanism
this substitution gives:

cpc hf5ep = :7 7’1/2 i ] 1/2

and:

where we have defined a

tc
r ==

c A
o

normalized coherence time aa:

.31 (~ Te(ke’O)
1/2 t= (psec)

s
~. (Pm) .

For the thermal mechanism,

and
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Using these equations in eqns (3.1)-(3.3) gives the relations for 1S1 filamentation found in Table II.
These results will be compared to results of the numericaI simulations in the next section.
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IV. Analy~is and Discussion
In this section, we use the code described in section II to simulate fdamentation behavior of

different be.r beam profiles. We proceed in a carefully structured manner, beginning with simple,
well-characterized problems having known solutions. Complexity is added to the interaction a step at
a time, gradually building up to simulations of realiitic laser beams propagating in laboratory-type
lasa-plasmas. As we proceed, unique characteristics of the newly added features are ident~led and
discussed. The analytic results of section III are also compared to these simulations, and the
limitations of the analysis are addressed.

We begin with the simplest ease of fdamentation: the propagation of a Gaussian laser beam in
a homogeneous, nonabsorbing, medium. Analytic solutions of this model for ponderomotive and
thermal fi.larnentation are developed in the appendix, and are compared to the numericaI solutions.
This comparison exposes the limitations of analytic methods for even the simplest cases of
fdamentation, and illustrates the physics that distinguishes the two types of fdament ation. Next, the
beam profde made more complex whale the plasma remains simple: we consider generic and optically
smoothed RPS and ISI laser beams. These more realistic beams are composed of randomly phased
perturbations of different wavelengths, and introduce the possibility of nonlinear mode coupling.
FmalIy, we add inhomogeneity and absorption to the plasma model, and consider laboratory plasmas
relevant to ICF experiments.

Throughout this analysis, we will use two basic parameters to measure fdamentation effects: the
filament focal length and the focal intensity mtimum. These quantities are useful filamentation
measures for two reasons: fret, these parameters can be directly compared to the analytic theory.
Secondly, the focal length gives the minimum size of a plasma in which fdamentation effects may be!
observed, while the maximum intensity quant.iiles the impact of filamentation on other nonlinear
processes.

The fdament focal length and intensity maximum are not easily defined except in the simplest
of cases. In these simple cases, the propagation of a single-peaked incident intensity profile, the fust
intensity maximum in the propagation direction corresponds to the focus of the fdament. In more
complex beam profdes, however, there may be (and usually are) many intensity maxima along the
propagation distance, of varying degrees of magni~ude. The usual practice here is to identify the
focus at the fmt intensity maximum encountered along the propagation direction; further, it is
supposed that this frost maximum ia due to focusing of the f~test growing mode. In some cases,
however, intensity maximums further along in the propagation may be considerably more intense than
the fnt. In this c~e, more than one focal length or intensity maximum can be defined.

In the following discussion, we make the following definitions for notational convenience: the
maximum value of a distribution I(x,z,t) over all values of the variable x is denoted as MAX{I}X,
whale the fmt maximum of the distribution in the direction of the variable z (i.e., where dI/dz=O
and d21/dz2<0 for the smallest value of z) is denoted MAXl{I}a. Also, the filamentation focal
length is sometimes abbreviated as 1
A. Fllamentation in Homo~eneous, &nabsorbinq Plasmas: G.wxmian filaments

The accnracy of theoretical approximations and predictions is evaluated using the laser-plasma
propagation code prenously described. For the purposes of the calculation and comparison, we begin
by using a nonabsorbing and homogeneous plasma. Nonabsorbing means that the laser energy is not
depleted as it propagate~ through the plasma; however, the l~er is allowed to heat the plasma to
produce the thermal and pressure gradients needed for thermal fdamentation. Homogeneity refers only
to the background plmma; again, the laser is allowed to produce the inhomogeneity needed for
filamentation. Although unrealistic in some ways, this plasma model provides a good test-bed for
basic fdamentation phenomena; it shows the qualitative fdamentation behavior, and allows us to
compare the calculations to the non-absorbing, homogeneous plasma theory of section HI. The frost
order effects of absorption and inhomogeneit y only alter the quantitative behavior of fdament ation.

“Absorption counteracts ffiamentation to fmt order by decreasing the growth rate by the amount -&b;
inhomogeneity, on the other hand, causes local variations in the strength of the focusing forces.
Inclusion of these factom is considered in section IV.B, which addresses laboratory plasm=.

We begin by considering the focusing of a Gaussian fdament in the steady state limit. The
numerical results can then be compared directly to approximate solutions of the steady-state nonlinear
propagation equation (2.3). The derivation and results of this Gaussian model for the ponderomotive
and ~hermal mechanisms are given in the appendix to this paper; the scaling and magnitude of the



focal lengths found there are the same or similar to the results given in Table I. The Gaussian
model also predicts peak intensiti~ reached during self-focusing. We compare the calculations to the
results of this model for the caaes of ponderomotive and thermal fdamentation separately.

A a fmt example, we calculate the intensity as a function of the distance of propagation into
the plasma for a case where only the ponderomotive force is active (fig. 1). The initial radius of the
fdament u a =20~o and the interaction strength is y =5x10-3 (this is 40 times the threshoId value).
The model &d calculation results are comparable: th~ focaI length (350~o) lies within ‘1O% of the
predicted result (315A ), impIying that the Gaussian model is fairly accurate in determining focal

.%.Ier@~ this agrees wit previous findingss’zg. However, the predicted focal intensity is much larger
than we fmd with the code. In part this is due to the sensitivity of the model’s peak intensity to
the focal spot radius: smalI changes in the radius give rise to large changes in the peak intensity
when the focal spot radius is small (MAX{ I}x*l/width). In reality, the fdament is not constrained
to stay Gaussian, and the peak intensity ia not so sensitive to the fdarnent radius. (The inability of
the Gaussian model to account for saturation effects in the &lelectric response is not important here,
m the maximum dielectric change in the simulation is ~0.5%).

Afta the fmt focus, the tllament usually behaves quite differently from the model; propagation
can be periodic, although it usually hasa more complex periodicity than predicted. The behavior
appears to depend on the power level of the fdament. Looking at the long distance behavior of the
simulation just described (fig. 2b, 40X threshold power), we observe the beam breaking up into two
off-axis fdaments which focus twice independently, and then combining again to form a single
fdament. The behavior is repeated again, but each time the central single fdament is degraded in
poweq the penodicity is only approximate since the original Gaus~ian is not reproduced. At higher
powers (fig. 2c, 450X threshold), the beam breaka into many fdaments, which spray outward from the
region of the first focus; in contrast a lower power example (fig. 2a, 10X threshold) exhibits the
simple oscillation predicted by the model although the oscillation is slowly damped by light escaping
the filament. In general, the num~;r of fdaments formed after the f~st focus is an increasing
function of the incident beam power .

The scaling behavior of the, spatial growth rate compares favorably with the model. Fig. 3a
plots the focal distance as a function of 7P for ponderomotively focused Gaussian filaments with
initial I/e radius ao=40Ao. (The fod distance is defined = the dutance from the beginning of the
propagation in the plaama to the point where the intensity reaches its frost maximu-..

A
A linear

least-squares fit through the data points yiel~~ ~he empirical dependence lf/aos7p . , which is
comparable to the pre&cted dependence lf/aqRyp . (from the appendix and table I). Calculations
performed for fdarnents with a Gaussian I/e intensity radius ao=20~ also exhibit this scaling.

The peak focal intensities are very weakly dependent upon y a~/~~j the theoretical controlling
par~meter, an$ are much smaller than predicted (fig. 3b~.

‘gain’ ‘he appiox$ma;;:6(E E)~c +~’E E in the model i; not violated even for the largest values of y a /~o.
?lindicatee t at deviationa from the Gaussian constant-shape ansatz are the failure modep~o the model.

The” deviations occur because the expansion C(X)SC (x=o)+.scnx2 used in the Gaussian model is
substantially violated in the simulation.

These calculations were repeated using only the thermal filamentation mechanism; the results
are shown in fig. 4. The initiai fdament radius ia again ao=40~o, and the interaction strength
parameter varies from y z=

T
5X1 O-8 to 5X10-5. The behavior h~~9 is not as simple as in the

ponderomotive cme. At ow powers the focal length varies m ‘r . , matching quite closely the
scaling of the predicted values, although the magnitude of the focal length is consistently ’20% larger
than the predicted value. Also, the maximum intensities are 50%-65% lower than predicted, though
they show the correct ecaling with the filament intensity.

Contrary to expectation, ae the interaction strength increeses to high values (TT2~X 10-6), the
focal length increesea and the focal intensity decreases. Closer examination of the simulation reveals
the cause of this curious behavioc at high intensities, the temperature profile becomes flat-topped and
sharp-aided (fig. 5). The electron thermal conductivity is a strong power of the temperature, so the
hot region (high conductivity) is smooth, and the cold region (low conductivity) has steep
temperature gradients. The density profde is shaped like the temperature profile (6ne&-6T$), so the
fdament refract primarily at the edges. The light refracted at this sharp edge is refracted mto large
angles, and the resulting interference of thk light with the main body of the filament creates high
frequency intensity Stmctnre. This structure increases the net diffractive force of the filament and
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counteracts the focusing tendency of the density channel; thus the focusing is reduced. The deliberate
creation of high frequency structure on the incident light has been suggested as a t31amentation
suppression mechaniam30, and is also the basis of the RPS illumination technique. Here, however,
the structure ia created by the Imer-plruma interaction itself.

The sharp-sided, flat-topped temperature profdes are dependent on the boundary conditions of
the code. The largest wavelength temperature perturbation is limited to the size of the numerical
mesh, which is only a few times larger than the fdament. Normally, this is of little consequence: if
there is moderate heating, the conductivity is approximately constant and the Fourier spectra of the
temperature has the same spectral range as the source. When the heating is strong however,
significant energy is transferred into both longer and shorter wavelength modes due to the
nonlinearities in the electron thermal conductivity’ and collision frequency: This energy cannot be put
into modes larger than the mesh size , so it is forced into the numerically resolvable spectrum, in
modes with shorter wavelengths. These amplitled short wavelength modes can then be further
enhanced by the temperature steepening associated with the nonlinear conductivity., Although these
particular results presented here are due in ~lme part to the computational constraints, the profile
steepening effect is a well-known phenomenon in nonlinear heat transport. The defocusing effect for
strong thermal fdarnentation exists, but the quantitative threshold calculated here is dependent on the
actual boundary conditions of the system, and is not universal. As the size of the ~y~tem increases
(relative to the heated region), the defocusing threshold will tend to increase.

The results of Gaussian beam fdarnentation show the limitations of the analysis for ideal
fdarnents in simple phurnas. Ponderomotive filamentation focal length scaling with intensity agrees
well with theory, but the predictions of the peak focal intensity are very inaccurate. In addition, the
propagation behavior is different than prerXcted; as the interaction gets stronger, more filaments are
formed as the beam breaks up after the first focus. Calculations and predictions of thermal
fdamentation agree fairly well in scaling and magnitude, but only at lower powers. At higher
powers, nonlinear temperature variations cause focusing effects to weaken. Aware of these constraints
and behaviors, we are prepared to examine filamentation occurring with more complex laser
illumination profdes.
B. Filamentation in Homogeneous, Nonabsorbing Plssmax Complex Liner Beams.

In this section we investigate the behavior of realiitic illumination profiles in simple plasmas.
Three difkrent laser beam types are considered here: the typicid or generic l-er beam, the RPS laser
beam, and the ISI laser beam. In part (i), these profdes are defined and their characteristic features
are discussed. Then, in parts (ii) through (iv), each profile is considered in turn, with the results of
the fdamentation simulations presented. The qualitative features of these simulations are discussed
and the quantitative rmults are compared to theory.

i. Definition and Construction of Complex Laser Beams.
We will fmt consider a “generic” laser intensity profde, representing a typical, high-power laser

beam. These profdes are determined by many installation-dependent (and time-dependent) pararrieters.
Imperfections of the optical system design or components, optical misalignment, or temperature
fluctuations present in the optical components during a speciilc shot , can cause unique aberrations in
the output beam. In gain-satnrated lasers, the aberration structure is preferentially in the phase of
the Iuer electric field. Further aggravating the problem, the desired focal spot size for lmge scale-
length laser-plasma interactions is much larger than the diffraction-limited spot size, and quasi-near
field intensity distributions must be used. In the quasi-near field, even small amounts of aberration
show up as signflcant structure in the intensity profile. Laser intensity profiIes are sometimes
characterized by their peak-to-valley intensity ratio; 3:1 to 10:1 are not uncommon values for this
parameter.

In this study, a variety of generic laser profiles with different root-mean-square standard
deviations are used (~2~,~Jdx(I(x)-I v )2/fI(x)2dx). The peak-to-average intensity difference is ‘4
times the value of a f $alues of ~rm,rm~, so typica are in the range of 0.25 to 1.0; ~ =0.5 is
often used as the representative value. In the code, these profiles are constructed ‘& adding
randomly ph~ed electric field fluctuations onto a DC (kx=O) electric field term. Electric field
fluctuations of all wavelengths (excepting the DC term) have the same amplitude, and span the
wavenumber spectrum (from [k~ I= l/X

‘%
to l/2!i7, in increments of l/X

dimensions are scaled to ~ ). ‘%; ‘ecall ‘ha’ all ‘patialVarying t e k ~0 amplitude relative to t e DC amphtude gives
different values of a ,m,. ~his construction &es two different characteristic amplitudes for the
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Fourier intensity sp~trum (fig. 6a). If the magnitude of the DC electric field term is Ao, and the
magfitude of the ftite wavenumber E ~field va~tiona ia al, then the intensit~ profde has Fourier
amplitgdea that are of order ‘2Aoal+a

-d al’
for the wavenumber ranges Ik I={1/Xmu:l/2F}

Aand Ikl I={1/2F:l/F} respectively. (Tie notation {a:b} denotes the range of v ues from a to b.)
For small values of ~rm~, al<<Ao, and the larger wavenumber range is of considerably smaller
amplitude than the shorter wavenumber range. (In fig. 6a, wit~ F/20 optics and a phxsma Pesh
length 400~o wide, these wavenumber ranges correspond to i kl I= {0.0025:0.025} and Ikl I=
{0.025:0.05), respectively.)

Next we consider the random-phaaescreen (RPS) illumination smoothing method. This is a
potentially attractive near-term meth~ for beam control, since it can be used on existing laser
beams. The laser beam ia passed through a simple raudom phase mask before it is focused down on
the target. This phsse mask consists of a large number of discrete areaa which randomly apply a
ph~e shift between O and ZT radians to the section of beam passing through it. (This is sIightIy
difhent than the current experimental version of RPS, where the randomly applied phase shifts are
either O or %.lO’ll ) At the lens focal plane, this produces a high frequency, spatially incoherent
pattern with a smooth envelope determined by the diffraction pattern of the individual phase-shifting
areas. This ia similar to the ISI method, but without the laser bandwidth the structure in the RPS”
method ia stationary in time. Jn principle, if the spatial structure has a high maximum wavenumber
k‘m, the fdamentation growth rate will be suppressed (similar to the situation observed in section
d .A with thermal fdamentatioq). This princi lC can be quant~led qsing the reIation in tabIe I;

1~4 (thermal).lfi (ponderomo 1 efdamentation ia stabilized when kl~ (2ne7p/n.c) t.v ) or kl~ (2neyT2/nc)
When there is appreciable energy in the high wavenumber modes, they diffract substantially over
distances smaller than the growth lengths of the unstable modes. If this small-scale diffraction causes
significant changes to the structure or phase of the larger unstable modes, filament ation may be
suppressed. AIso, the presence of appreciable energy in these modes implies that there is less power
in the unstable modes, which contributes to stabilization.

The RPS technique generates an intensity profde that contains both larger amplitude and
higher wavenumber components than the generic profde. A typical profile (fig. 6) has higher peak
intensities and higher spatial frequencies than a corresponding generic profile. The wavenumber
spectrum of the RPS beam is controlled mainly by the F number. of the lens: the highest
wavenumber component of the incident electric field has a wavenumber k * I/2F.

{
The DC (kl=O)

electric field term ia of the same order es the ftite wsvenumber (kl*O) e ectric field amplitudes, so
the high and low wavenumber intensity ranges ( ! k [ ={1/Xmax:I/2F} and ( k I={1/2F:l/F},
respectively) will have amplitudes of the same order. mce MS requir- fast optics ~small F/#), the&
largest wavenumber in these profdes is usually much larger than in the corresponding generic profile.
One of the purposes here is to bracket the acceptable F/# range for the RPS method.

Finally, we alao simulate the induced-spatial-incoherence optical smoothing method. 1S1 in its
simplest form is produced by passing a broad-band laser beam through an echelon, or stepped
transmitting plate. Each echelon step, like the random-phase-screen, produces a phase shift by
imposing a time delay on the beam passing through. Unlike the RPS technique, the time delay of
each echelon step relative to any other step ia longer than the laser coherence time, so that the
spatially incoherent structure produced at the focus completely changes on the time scale of the laser
coherence time. Since the coherence time (alpsec) can be made much shorter than gross plasma
hydrodynamic response times (v100ps), the plasma should respond hydrodynamically only to the time
average of the laser profde, which asymptotically approaches a smooth envelope function.

Of these three Imer profde types, only ISI is inherently a time-dependent profiIe. For the
generic and RPS cases, the intensity profde is frozen in, and the plasma can reach a quasi-steady
equilibrium if the laser pulse is long enough (multi-nanoseconds). We have performed time-dependent
shmdations using these stationary laser profdes, and they show close agreement with the steady state
simulations after times on the order of a few ~l/C~. (In other apec~lc CZM~, it hna been shown
that steady state lmmr prof--es can result in inherently timedependent behavior . In our formalism,
the neglect of axial density coupling in eqrm. (2.7) and (2.9) has ruled out the possibility of this
type of nonstationary behavior, so the issue is not addressed here. However, it deserves closer
investigation in the future.)
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ii. Filamentation of Generic Laser Beams
We now consider the behavior of the generic laser beam in the homogeneous, nonabsorbin

-2plasma where only the ponderomotive force ia operative. Fig. 7 shows a typical result (7P=1.3X 10 ,
u =,5, and F/10 optics): in general, the hot spots behave like indhidual noninteracting filaments
&%?ar to the Ga.saian fdament shown earlier. Interaction between fdaments tends to occur only if
two hot spots happen to be initially close (&t artces on the order of their own diameter), or on an
initially intersecting path.

The behavior of the individual Fourier modes in this simulation can be compared directly to
perturbation theory. One might expect the comparison to be adequate up to the point where the
mode coupling is appreciable. Fig. 8 shows the low order Fourier mode amplitudes of the intensity
distribution, and compares them to the results found by applying the factor exp(k (kl)L) (f~om table
I) to the incident intensity distribution. 8In theo~, the most unstable mo e M at k ~=0.025
(k =40~o); in the simulation this mode closely folIows the predicted growth for zf400~ , after which

{it evels off and then decreases. Qther theoretically unstable modes grow at rates ~ifferent (and
generally less) than pre&cted. For kl~0.04, the modes are supposedly stable, yet significant energy
appears to be going into- these modes after propagation diitances of 100-200 ?.. This shift of energy
from small kl to large kl is expected for fib.ments that focus and contract m size.

Although the indhndual modes do not behave as predicted due to mode coupliig effects, the
focal length predictions are fairly accurate. Fig. 9 shows the variation of focal length and focal
intensity with ~ for simulations with F/20 and F/10 optics and ~rm~=0.5 on a 400~o wide mesh;

?the focus ia de med at the point MAX1{MAX{I}X} . There is close agreement between the focal
length prediction and simulation: 1the simulation resu ts lie very near to the predicted values (from
table I) shown by the dotted line. (This is. partially fortuitous, since the formulas in table I are
independent of u Although different values of ~ result in dfierent focal lengths (e.~~~-f., smaller
u ?~. the scaling of If with 7gives larger f , is sti~~.) For smaller values of y (table I)

% in the incident intensity profile (~~$xS?/F). Forsince the fastest growing mode ia represent
y ~.005, however, the fastest growing mode is liiited by the smallest perturbation wavelength in
tfe incident spectrum ~l=?~~~. ~ tfi rage of 7PJ the f&xst growing mode is constant and the
focal length scales as If-’/p . (table I). .In contrast to the focal length predictions, the intensity
maximum prdctions are very inaccurate. Two regimes appear to have been re-~rsed. between theory
and simul tion: at small ~ , we expect MAX{I} ~zmconstant (since I

1~2 [table 11), an
=7 kl [see appendix], and

k~m-y c? instead we observe a rapidly increasing ~X{fixz. For y M.005 we

expect hk{I} ,-’7P (table I,usingkl‘u-constant), and we observe a conatut or slight~y declining
value of MAX&x ~ with increming y .

h mmrrmry~ the focal length predictions seem to apply better than expected fok ponderomotive
filamentation of generic liner profdes composed of many modes. In contrast, the predictions of
intensity maxima are quite inaccurate in the name situation. The same tendencies were noted with
the Gauaaian beam simulations (see fig. s).

With the thermal filamentation mechanism acting alone on the generic laser profiles, we
observe a qualitatively different behavio~ the thrnents tend to attract one another over distances
much ~eater than their own dmensions (fig. 10: 7T2=1.2X10-6, F/20, and ~ =0.5). The diffusive

~ larger than the hotelectron thermal conduction produces temperature and density structures muc

~Potai the -~t ~ the development of l~ge wavelength ~ten~ity mode~) composed of many smaller
scale fdaments. This large scale ‘supermode= undergoes large scale periodic focusing and defocusing
when propagating over large distances. Since the most unstable mode is at ki=O, and the growth
length decre~es monotonically as k ●0, the d~ension of this supermode is lixmted only by the size
of the physical system. The grosn h umination symmetry c= be affected by this filament clustering
behavior.

The applicability of the perturbation analysis to these type of profd- is =essed by examining
a Fourier decomposition of the intensity profile ~lg. 11). Simulation and theory agree that the
fastest growing mode ia the smallest wavenumber (kl=0.0025) of the system. The periodicity evident
in the lowest order mode matches up with the gross periodicity of the distribution as seen in fig. 10.
The theoretical period of this mode is -S80~o, about 1/3 of the measured periodicity of 1500~ .
The growth rates for other modes in the simulation also tend to be smaller than predicted, and mo e3
coupling effects are evident after propagation distances of a few hundred lo into the plasma.
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The observed filamentation parameters for thermal fdamentation of generic beams are shown in
fig. 12 M a function of YT , for beams with G =0.s and F/20 optics.

~the dotted lines.
The theoretical focal length

and MAX1{MAX{I}X} vt?)ues are shown wit The scalings observed in the
?“simulation match theee ady we~ but the magnitude of the values indicate much less fdamentation

than ia predicted the focal lengths are ~sx larger, and the intensity maximums are *1OOX larger.
Although the intensity peaka are much smaller than predicted, there is a definite sensitivity to
interaction strength, in contrmt “to the ponderomotive mechanism.

iii. Fdamentation of RPS Laaer Beams
Next, we will consider the effect of the RPS optical smoothing method on fdamentation. The

profde of the RPS beam, as noted earlier, differe from a severely aberrated generic laser beam mairdy
in the “larger extent of the RPS wavenumber spectrum; this extent ia determined by the F/# of the
focusing Iena. Here, we vary the F/# of the RPS profiIe and meaaure the fdamentation intensit

-1incrwwe. These are shown in fig. 13 for four ctmx (a) pon$womotive mechaniam onl~ TP=l.3X 10-3,

yT2=0; (b)-~hemd ‘echankm ‘nly: 7 ‘o} 7TZ=l”Zx10 ; (c) both ‘echanisrns: 7 ‘1.3X 10 J
7T2=1-ZX10; -d (d) no mechaniamx ~=’fT2=0. There ia a clear trend towards smal?er intensity
maximums aa the F/# decreasea. For optics ~F/5, there ia little increase in the peak intensity
compared to the Ievela attained in free propagation (i.e., dl fdmnentation turned off). The threshold
perturbation wavelengths for ponderomotive and thermal filamentation are about 30~ , and the
simulation were done on a mesh with a transverse length of 400~ . Thus, ae the F/$ decreases
more energy ia put into the filarpen
energy in the .~table

odes (k z~~n-stabilized wavelength reg?on, ~L<30~o. The amount of

I&
=Threshol~T~venumber) is given approximately by the

expression (l-k [F/#] )S~2, so d“ erent values of k change the magnitude of the fda~ ~tation
.suppremion effect. Mao, since pondemmotive fllamentation tends to have larger values of k than
thermal fdamentation, the RPS method should be more effective in suppressing ponderomotive
tlhunentation.

There are possible concerns with the RPS smoothing technique: first, the typical intensity
m~um ia still of order 10 times the average intensity value, even for the faatest optics. Another
concern ia that large laser-plasma interaction chambers and Iaser-fusion reactor designs require slow

?)?optics (~ /20) in order to reduce damage to optics and m“inimize the surface area taken up b? optics
in the interaction chambeq fast optia can not be used in these applications. There ia a possibility,
however, that the many beams used in symmetrically illuminated reactor designs may provide the
effect of fast optics: since any area’ of the pellet will be illuminated by a l~ge number of beams
incident at large relative angles, the small F/# (NF/l) intensity distribution that is formed may
supprese fdament ation.

iv. Fdamentation of 1S1 Laaer Beams
We now consider ISI illumination incident on the homogeneous nonabsorbing plasma. Direct

comparison with the other methods” ia more difficult, since the inherent time dependence of ISI
irradiation complicates the measurement of fihunentation. The observable, instead of possessing a
singIe value, are now represented by probability distribution functions of the independent variables z,
X, and t. As a remit, fdamentation parameters such as intensity peaks or focal distances can be
defined in many different ways which give different values; we often use more than one definition
when evaluating a parameter. (In the following, a time average of a distribution I(x,z,t) is denoted
by the brackets < >, def-med as: <I(x,z)>= f’dt’I(x,s,t’)/~dt’.)

An example of 1S1 with only the ponderomotive force acting is shown in fig. 14. The
interaction parameters are YP=0.0051, TC=$2, and ne/ncn =0.5; the incident lens ia F/20, and 10
echelon steps are resolved on the 200~o wide calculation & mesh. Fig. 14(c) shows the intensity
distribution <I(x,z) > averaged over 84 coherence times. Little intensity magnification ia seen: the
peak average inteneity (MAX{ <I(X,X)>}X z) is only -1.5 times the incident peak average intensity
(MAX{ <I(X,Z=O)>}X= 1.281.). One of the most noticeable changes in the intensity is the
development of high wavenurnbers in the spatial structure M it propagates into the plasma. PIots of
the instantameoue irradiation at 42 and 84tc exhibit high intensity fdaments (peak intensities as large
ae 12XIO) in the plasma. These fdamentary structures move about rapidly in the plasma and
produce a much smoother time-averaged distribution. This is favorable for hydrodynamic or other
long-time scale processes which will respond only to the smoothed average intensity distribution.
However, many laser-plasma parametric instabilities (e.g., SRS, SBS, 2UP, etc.) have growth times on
the order of the laser coherence time and may respond to the rapidly shifting intensity spikes. The
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magnitude of the differences in these two distributions is seen by comparing the time-averaged
intensity maxima in the plazma, <MAX{ I(z,x, t)} X>, to the maxima of the time-averaged intensity,
MAX{< I(x,z)>}x (fig. 15a). The averaged intenwty maxima show the long term existence of these
spikes; the average m&.nmm intensity is ‘1010 , compared to the average incident maximum of 3.81 .

Another measure of the importance of the instantaneous fdaments is given by the intensi?y
probability distribution at a given point in the plaama. The (time averaged) incident intensity
probability distribution iag p (l/l.)= exp(-I/Io); fdamentation effects cause enhancement of the higher
intensity portion of this i istribution as the laser propagates into the plasma. When this
enhancement occurs, it ia useful to know how much energy resides in fiIaments; it could then be
possible to estimate how much energy ia available to drive other plasma instabilities. The energy
redistribution ia found by integrating the fwst moment of the intensity probability distribution
function to determine how much energy is at or above a certain intensity. We call this the
integrated energy d~tribution fMCtiOX.I(IEDF), and define it here as:

.

IEDF(I/lO)z jm a ‘pl~/ j> ‘PI(X)
1/10

The incident distribution function is: IEDF(I/19,z=O)= (l+ I/Io)exp(-I/Io). The change in this
distribution is shown es a function of the propagation distance in fig. 15b, where the high intensity
enhancement due to fdament formation ia evident. The total amount of energy in the high intensity
region is sign~lcant: N5Y0 of the energy appears at intensities greater than ’910 in the bulk of the
pl~ma. In contr=t, at z=O, ‘0.1% of the energy is at intensities greater than 91..

The density variations responsible for the fdaments observed in the imitantaneous intensity
distributions are relatively sm~ MAX{ Idne/no I}X,z?i% (fig. 16). These shalIow density channels
produce filaments because the phaae shifts are integrated over several hundred ~ propagation
distantes. Thu is particularly true in these homogeneous nonabsorbing plasmas, since t e coupling is1
high over the entire propagation region. In contrast, the high coupling regions in laboratory plasmas
are much smaller in size, and occur after most of the propagation (and most of the absorption) has
taken place; we find in the next section that laboratory plasmas generally do not give rise “to the
magnitude of fdamentation seen in these simple plasmas.

The remdts of this particular simulation can be compared to the theory. Using Table II, we
fmd that the fastest growing mode for T #/2=9.1x 10-3 and n/nc=0.5 is ~1~30~ . This mode is
close to the minimum intensity wavelength g~nerated by the F/20 optics (20~o). ~he characteristic
growth length (k-l) of this fastest growing mode in ~ ~1800~o (Table II), and corresponds to a focal
length 1~320~ ~appendix). ‘1There are several ways o measuring a tire-averaged focal length in the

?simulation, o which three are used here: (l. ) the position of highest time-averaged maximum
intensity (If at MAX{< MAX{I} >}z); (2.) the position of highest maximum time-averaged intensity
(1 at MAX{< I>} ,X); and ~3.) the time-averaged position of maximum intensity (If at
<b{I)x ~>). (1.~ and (2.) can be found directly from fig. 15(a), the third is calculated during
the simula~zon. These values are: (l.) 200~o; (2.) 162.5~o; and (3.) 242~o, respectively. All are
somewhat less than the predicted value; this suggests that the averaging done by the plasma is
nonliie~, as it responds more to the intensity peaks in the distribution than the time averaged
values.

As a more general test of the 1S1 theory, we examine a larger range of parameters, and
calculate the scaling behavior. Many 1S1 ponderornotive fdam~~tation runs have been made with
dMerent values of both interaction strength and coherence time. 7P and Tc were independently
varied in the ranges 5X10-4<7 <2 X10-2 and .05<~c<3.2. All simulations shown m fig. 17 were done
with 40 echelon steps, F/ZO ~ptics, and n/nc=0.5 on a mesh 200k across; the results are not
sensitive to F/# (for F~lO) or mesh nize. The focal lengths &sing the three methods of
deter ‘“ination mentioned previously) are shown as a function of the theoretical scaling parameter
‘/ ~T2. The dotted line ia the focal length rmge expected from theory, as determined by the fastest
g?o&ng mode oc urri in the incident radiation. At the lower powers, the fastest growing mode
vties es *(’7 ~~2]-4~~ (table If). At higher intensities, the fastest growing mode in table II has a

p afler than any 1wavelength sm .n the incident spectrum (~ . =20~o), so ~ s ould be the fastest
growing mode. ~~in hi-i/2 The data ~The focal lengths at higher powers should?k~n vary M If lfp~ )
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ill~;’’l-”v<r:i’]-l,’

closer to the variation throughout; a least squares fit using all of the points gives
This scaling suggests that the dominant fastest growing wavelength (~~ax) is

.
The averaged m~um intensities are plotted as a function of r #/2 in fig. 17(b). There is

a distinct separation of these averaged values: the time averaged maximpu; values, <MAX{I} >, are
always much larger than the maximum time averaged values, MAX{<I>}x. There seems to Fe little
consistent variation in the latt r the interaction strength is increased, whereas the values of
<MAX{I} > incre=e ss “[7 #2$’3.

Th&nal fdamentatio~ ~alculations were also done using 1S1 illumination in these simple
phumas. An example is shown in detail in fig. 18; this particular simulation is performed with F/ZO
optia, TC=0.53, n/nc=0.5, 7T =2X104, and .yT1=3.8X 10-4.

%
Even with incoherent illumination, the

characteristic signature of t ermal filamentation is apparent in the instantaneous intensity
distributions: the filaments attract one another, forming large modes composed of high wavenumber
structure. Again, this is associated with large-scale density and temperature fluctuations (fig. 19).
As in the ponderomotive mechanism, the time averaging smears out most of the stmcture seen in the
snapshot% however, sign~lcant structure in both high and Iow-wavenumber modes can still be seen in
the time average, especially in the lowest order modes.

Once again the time-averaged distribution is much smoother than the instantaneous
distributions suggest; the averaged maximum intensity <MAX{I}X> is signiilcantiy larger than the
maximum averaged intensity MAX{< E-} (fig. 208). The energy distribution looks very similar to
the ponderomotively driven case (fig. ZO1; cf. fig. 15b); the integrated energy distribution function
reveals that ‘5% of the laser energy is at intensities greater than 101., comparable to the
ponderomotive example.

In fig. 21 the theoretical predictions are compared with a wide variety of runs at different
ktensities and coherence times

and o 5<T & ~T2 and r

were independently varied in the ranges
2.5X10-7<YT <5 X10-6 . . .

!

All of tie simulations included the theoretical fastest

f~O~~f/2~ ~. The agreemerit between theory and calculation is better than expected in both
in the incident $ntensity ~pectrum, so the growth length should scale as

Sc$n g and magnitude. Th e is .a large scatter in the peak intensity values MAX1{MAX{<I>} }
172 because the focusing is very mild; these intensities are only a ?e$for small values of 7T Tc

%percent greater than t e incident peak (fig. 21b). Such peaks are probably due to. statistical
scattering of the light, not fllarnentation. The expected separation between the values of
M&X{<I>

i
and <MAX{I]X z> is observed, and a slight dependence on the interaction strength

, (-(7T~p/ P}5) h nOted. ‘
T~ese simulations of ISI in simple plasmas show that the 1S1 ~arnentation formulas in table II

are onIy moderately accurate. The focal length predictions fit the observed thermal filamentation
behavior (fig. 21a) better than the observed ponderomotive filamentation behavior (fig. l?a). This
can be explained by noting that thermal illaments experience longer time-averaging than
ponderomotive filaments. The ponderomotively unstable filaments are smaller in size (so the
averaging time ~ /Cs ia smaller) than the thermally unstable modes.

$.r
Since they are averaged less,

ponderomotively iven perturbations have a larger statistical deviation. Some perturbation modes
(that happen to be larger than average) will grow faster, and produce shorter focal lengths, than
predicted. Th~ is the behavior seen with the ponderomotive simulations in fig. 17a. Thus, it is
reasonable to expect our ISI fdamentation theory to model thermal fdamentation more accurately than
ponderomotive fdament ation.
C. Fllamentation of Comdex Laser Beams in Laborato ry Plasmas

We conclude the analysis with a treatment of fdamentation in more realistic (Le., absorbing
and inhomogeneons.) plasmas, in particular those that are produced in ICF research laboratories or
foreseen for ICF applications. We cannot attempt an exhaustive dcxcription, = there is a huge range
of conditions encountered in these laboratory plasmas; instead, we concentrate on exarnples of plasmas
that are generated by moderately high power laser light at wavelengths of 1.06$m, 0.53~m, and
0.25~m. These wavelengths correspond to Nd-glass l~ers, frequency-doubled Nd-glass I=ers, and KrF
or Nd-glass fkequency-quadrupled l~ers, respectively. For the 1.06 and 0.53pm cases, plasma1#~4fij~
were generated by the NRL FAST2D hydrocode to simulate near-term flat-target experiments ‘ ‘ ;
the two-dimensional density and temperature distribution are averaged in the transverse direction to
produce the one-dimensional density and temperature profiles used in the code. The 0.25ftm laser-
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plasma profde W- generated by the NRL FAST ID hydrocodeao in a simulation of a few-mega “oule
KrF-driven reactor-sized pelletl. %The fmt two plasmas have scalelengths on the order of 10 10,
while the l-t is a plasma with a scalelength on the order of 104~ . These density and temperature
profdes, along with the -ciated laser parameters, are shown in & 22. In all of the calculations
presented here, the kr light is propagated in the region from O.Olnc it to 0.5ncr.t; propagation to
higher density is limited by the assumptions undedying the validity o the parabo c wave equation.f h
The fdamentation coupliig is high in the region between 0.01 and 0.5ncrit, but the propagation
distance is sm~ and the absorption is relatively high (especially for the shorter wavelength plasmas).
Thus, little additional fdamentation should occur in this higher density region.

In each plasma there is a range of perturbation wavelengths over which either the
ponderomotive or thermal mechanism dominates. Thermal filamentation dominates at larger scales,
ponderomotive at the shorter scales. As not d in section LILA, these regions are delineated by the

1~2 As the laser wavelength decreases (with constantcharacteristic wavelength ~1/~ ‘(Tp/TT~) .
intensity), the relevant plasma c?ensity increases and the plmma temperature decreases slightly (due to
the higher plasma heat capacity). Thus, with smaller laser wavelength, the ponderomotive
contribution decreases (T ‘~~), the thermal contribution increases (TT2NT~5), and thermal
filamentat.on dominates ?ver a wider range of wavelengths. In addition, the absorption rate

2 ‘)2) of the plasma increases es the laser wavelength decreases.(~NneT The higher absorption raises
the fdamentation threshold and lowers the growth rate, since the fdament must now grow faster than
it ia absorbed. We fmd that absorption can effectively suppress fdamentation in shorter wavelength
plasmas.

The 1.06~m l~er-plssma absorbs little laser light in the region O.Olnc it to 0.5n . , and the
ponderomotive mechanism is strong (7P-0 .016, TT2%?X 10-7 at n/nc it=0.25\. JThe p~; eromotive
mechanism dominates the thermal mechanism for ~l@70~o, which inc[udes most of the range of the
simulations. This plasma efficiently filaments laser l?ght, including incident light that is very
uniform. Fig. 23a shows simulation results for generic laser profiles with different incident ~
incident beams with perturbation levels ~r ~~0.05 begin to filament.
beams have O=

Since most high-power ~~~~
>>0.05, this implies that &mentation is a common event at this laser wavelength.

Using a random-phase screen with 80 phase shift sections and F/5 optics does not improve matters
significantly fdaments with peak intensities ~2510 are still observed.

When 1S1 is app!ied at 1.06~m with T =0.25 (tc=lpsec, or Aw/~~0.003), filamentation is

tappreciably, but not completely, suppressed compare fig. 24b to fig. 23a). The instantaneous
intensity d~tributions (fig. 24a), the time averaged intensity maximums (< MAX{I} >, fig. 24b), and
the integrated energy distribution (fig. 24c) all show evidence of instantaneous A ament formation.1
The integrated energy distribution reveals constantly increixing levels of energy at all intensity levels;
although the beam begins with less ~hsn 5X10-2% of its energy above 101., at n/nc=0.5, more than
2% of its energy is above 101 . The structure of these instantaneous fdaments (fig. 24a) reflects the
dominance of the ponderomoti~e fdarnentation mechanism. The time averaged intensity distribution
(averaged over 250TC (fig. 24d) is much smoother , since the rllaments move about and do not
concentrate in a single area. Residual fluctuations left on the incident profile show little growth
compared to generic beams (MAX{ <I>}X ~<210 in fig. 24d; cf. fig. 2Sa where MAX{<I>}X ~-10-
401A). * >

v Filamentation is less dominant in the plaama created with the 0.53~m wavelength laser.
Although a sigtilcaut fraction of the incident light gets to 0.5ncrit, and the plasma is 60% larger
than the plasma at 1.06~m, the smaller Iaaer wavelength reduces the po-~deromotive force effect
(7 ~0.0057 at n/ntit=0.25). Thermal fdamentation ia stronger (7T2=9X 10 ), and should dominate
po~demmotive efkts for filaments with ~l~O~o. With generic laser profdes (fig. 23b), we find that
filamentation begins to occur when a moderate fluctuation levei (arm, ~.3) is incident; this
fluctuation level is well within the typical range. The RPS method with F/5 optics suppresses
fdamentation somewhat, reducing fdament intensities to about 12 times the average intensity (square
symbols, fig. 23b) .

When 1S1 is applied to the 0.53pm plasma with Tc=l (tc=2.1psec, or L~/w~l.7X10-3), it

suppresses fdamentation about as well as the 1.06~m case (fig. 25; cf. fig. 24). Apparently the
smaller interaction strength is offset by the longer interaction region (as measured in laser
wavelengths) in this plasma. Although thermal fdamentation is stronger in this plmma, the structure
of the intensity distributions suggests that ponderomotive effects are still quite dominant.
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Finally, we consider filamentation in the 0.25~m laser wavelength plasma. At ne/ncr.t=().25,
the pondero-~otive mechanism (T ‘8.8 X10-4) dominates the thermal fiIamentation mec anism
(qT2aS.7X10 ) for fd=ent sizes kp~50~o.

i

h
Thermal fdamentation is actually less important here

than in the 0.53/bm ease because is smaller (Z=l as opposed to Z=3.5) and the temperature is
dightly greater (due to a higher intensity and longer pulse length). This example is also different
from the other two c=es because it h= a much longer plasma scalelength, as would be generated in
a direct-drive Lxwr-fusion reactor. The Iarge scaIelength presents a worse-case test for fdament ation
at this wavelength, since it provides a longer gain path for the unstable modes. Counteracting this
effect is the higher absorption efficiency of short-wavelength laser plasmas. The amount of
fflamentation in these plasmas wilI be determined by which one of these two opposing effects is
dominant.

Generic laser beams fdament in this 0.25~m pl~ma when the incident perturbation level is
greater than (Tm~m0.2 (fig. 2SC). The M.AX{I}x ~ vs. ~r s curve is similar to the curves from the

~ intensities are smaller. These smallerlonger laser wavelength interactions, except th.dt the pe
intensities are due primarily to the higher absorption rate. The RPS method with F/5 optics does
not appear to significantly affect the fdamentation tendency (see the square aymbola in fig. 23c); peak
fdament intensities ~1210 are still observed.

ISI is sign~lcantly more effective at suppressing flamentation in this 0.25pm phiama than it is
at the longer laser wavelengths. Applying ISI with 7_c=l (tc=0.9psec, or AM/Mg9x 10-4) eliminates
fdamentation over both short and long time averages (figs. 26a and 26d). The integrated energy
distribution (fig. 26c) and MAX{I}X curves (fig. 26b) show steamy decreasing energy levels at all
intensities as the beam propagates into the plasma. In addition, the ratio MAX{ <I> }x-
MIN(<k-}x)/<l ~ (z)> (fig. 26b) shows that the nonuniformity level is not increasing aa the laser
propagates. ~h~ high absorptivity of the plasma appears to dominate any filaxnentation
enhancements due to the longer plasma scalelength.
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V. Conclusions
We have examined ponderomotive and thermal filamentation mechanisms for Gaussian, 1S1,

RPS, and generic (typical) laser beams in laser-produced plasmas. Time-dependent and steady-state
las~plasma propagation codes have been constructed to simulate fdamentation under these conditions.
A standard theoretical formulation of filamentation was presented and extended to account for
incoherent light, such as that found in ISI laser beams. The predictions of this analysis were then
compared to the results of the laser-plasma propagation codes. Fret, a simple plasma (homogeneous
and non-absorbing) wu used to study quantitative aspects of filamentation, and to compare the
results to the theory. Then, simulations were done with realistic laboratory pl~mti to determine the
importance of fdarnentation in more complex experimental environments.

There is a distinctive behavior that dfierentiates the ponderomotive and thermal-conduction
dominated fiiarnentatioq mechanisms. In general, ponderomotively-driven filaments interact locally
through interference effects of the light waves; these filaments tend to be independent from one
another. In thermally-driven filamentation, the high plasma conductivity creates long-scale density
gradients that cause light filaments to attract one another at large distances. This attraction
mechanism decreasesthe spatial coherence of the beam, increaaes the width of the perturbation
wavenumber spectrum, and can reduce or stabilize furtherIarge+cde self focusing. At high powers,
the effect is enhanced by the nonlinear behavior of the temperature profde.

Simulations of Gaussian laser beams show the limitations of the theoretical analysis. The
ponderomotive focal length predictions agree quite well with the theoretical predictions, but the
behavior of the light in and after the fmt focus can dfier markedIy from the predictions. Gaussian
bemna undergoing thermal fdamentation agree with theoretical predictions only at lower intensities; at
higher intensities the focal length increases rather than decreases, and the peak titensities decrease
rather than increase. Both of these effects are due to the stabilization effects of the nonlinear
temperature profde. In both the ponderomotive and thermaI fdamentation cases, peak intensities
found in the simulations fall far short of their predicted values.

There are significant discrepancies between the perturbation theory and the simulations for the
generic and RPS smoothed laser beams: the fastest-growing mode is often different than predicted,
and the growth rates for most Ionge,r wavelength unstable modes are lower than predicted. The
supposedly stable higher wavenumber modes grow , apparently due to nonlinear mode-mode coupling.
In spite of these discrepancies, comparisons of the remdts to the theoreticzd focaI Iength scaIing !aws
show rough agreement. Comparisons to the peak intensity scaling laws me again poor. The RPS
optical control technique is able to suppress fiiamentation under some plasma conditions, but requires
relatively fast focusing optics (~F/5).

The ISI smoothing technique is fwst simulated in homogeneous, nonabsorbing plasmas. Time
averages on the order of a hundred coherence times show relatively smooth laser illumination, but
there can be a simultaneous increase “in the proportion of laser energy at the higher id ensities. This
has important implications for nonlinear interactions that respond to the light on times of order of
the laser coherence time (-psec). Scaling studies of the 1S1 focal lengths show agreement between
theory and calculations. In contrast, the maximum intensity leveIs in the plasma are found to be
relatively insensitive to the interaction strength, in disagreement with our theoretical predictions.

Simulations using near-term Laboratory plasmas demonstrate that fdamentation tends to be
much stronger at longer laser wavelengths (i. e., ~ =1.06~m and 0.53pm). Ponderomotive
fdamentation is dominant at 1.06pm, and is exacerbate ~ by the relatively small underdense-plasma
absorption. Generic beams of high quality and RPS-sntoothed beams both filament rapidly
(producing fdament intensities ‘25-30 times the average). ISI aIso shows some evidence of enhanced
energy at higher intensity in the 1.06$m liner-plasma. The strong fdamentation tendency exhibited
by the 1.06~m wavelength interaction (also at 0.53~m) underscores the importance of fdarnentation in
near-term laser-pla9ma experiments: the l~er-plasma interactions at these longer laser wavelengths are
probably dominated by fdamentation effects.



In reactor-sized plaamas at shorter Iaaer wavelengths (~o= 0.25jbm), the increased absorption
reducw fdarnentation for .alI typesof l=er beams. When filamentation occurs, maximum intensities
are ‘IO-15 times the average incident intensity. RPS smoothed beama do not reduce these maximum
intensity leveIa. However, the ISI smoothing technique or very cIean beam profdes (~rm~~.l) can
eliminate fiIamentation in short wavelength lzwr plasm=.
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Appendix
The quasi-optic equation (2.3) can be solved using the paraxial approximation, which consists

of expanding the nonli~ear dielectric constant in the transverse variable and keeping only the fiist
order, quadratic terms . It is a well known that a beam that initially has a Gaussian intensity
profile and a constant or quadratically varying phase front remains Gaussian m it propagates through
a quadratically varying dielectric constant. We thus consider a Gaussian filament for consistency.
The electric field of the fdarnent is writtem”

a N/2

#(x,?) [1=*O(X)~] exp{-x2/2a(q)2+i(#O(q)+#1(7)x2)} (Al)

where a(~) is the I/e radius of the filament at distance ~, a- ia the initial fdament radius, N is the. . .
n~bw of ~~versi dimensions, and $0 and ~1 are real._ AUSwritten, the field

a(~) varies. Inserting (Al) in equation j)2.3 , using the paraxial approximation
(a[~(~,x=O)]/a[x2])x2 (wmune that ?k/ax iS red), separating real and imaginary
like powers of x, we fmd the following equation for the fdament radius a(~):

conserves energy as
15(q,x)fl e(q,x=o)+
parts, and equating

(A.2)

A.1 Ponderomotive Filamentation
For ponderomotive fdamentation, ?lc(q,x)/dx2=d (na(~,x)/nc)/ax2~ -neo/ncTpa(~)-2 (ao/a(~))N,

where 7P is evaluated at x=O. This leads to the equatio-n:

N
d=u%hl= L 2 (4=) 7pao

- 4x
dq2 l+N

a(~)3 , a(~)

The fda.mentation threshold is determined when da(~) /d~=O
th.whold fd~ent radius ix

Th21q
[1

-1/2“

‘OP G ncvp

(A.3)

and d2a(~,z=O)/d~2=0 at ~=0. The

(A. 4)

This radius is independent of the dimension N, and agrees with table I if we define ~he effective
perturbation wavelength of the Gaussian distribution to be klP(Gaussian) = x’42 a. ~ 4.4a.
(assuming 2n/ncvp << N).

The n lutions me dependent upon N, and are straightforward when n/nc is independent of ~,
and ~=z/c1~2. For N=z, the solution of (A.3) ix

o

(1-472 (n/nc)y a~] ~ 2

a2 (71 = =: + [1
—

4x2e
a

o
0

This predicts that for fdaments above threshold, the radius will go to zero at:

(A.5)

#2

lfp (N=2)= 27~~/2 a: [4r2 ~ 7 a2
. p 0- ‘1-1’2 ‘ [9” ;/2

(.4.6)

ncy?
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The collapse of the filament to zero radius at z=l
T

occurs in this model because the dielectric
constant (previous to (A.s)) is approximated as direct y proportional to the intensity. The induced ~
causes refractive forces that are always larger thau dfiractive forces, and the filament collapses to
zero radius and infinite peak intensity. In a real plasma, the induced ~ saturates at ~= 1, and
diffraction eventually overtakes the filamentation forces when the radius is of the order of k .
Although the solution ia technically invalid at s=l~, the collapse is rapid enough that the solution ?s
valid close to 1~, and 1

%
is a good approximation to the focal distance in the real case. This

value u in agreement wlt table I if we use the previous definition of the Gaussian wavelength
(klP=fiao), and defiie the Gaussian growth wavelength ~gP=271P

When N=I the solution a(s) to (A.3) &

[C+)2+VW-1]1’2=:- *[ : +Sin-’[;;f:;lq] (An
o

2=el/2
2

where: zo~ ~ ; C ~ (1-2J?ao) /a.; and ~ s 472 (n/nc)7pao.

pao=l is equivalent to the threshold condition given by (A.4). This displays a focal length given
b~

8r4a~(n/nc) 7 r5~/2 ra .1/2
llP (N=l) =

(8r2(n/nc)7pa~-1)3/2 = ~8:07;11/2
c

(A.8)

The approximation on the RH8 ox (A.8) is valid for fdaments far over threshold 8~(n/nc)7 az>> 1.
In thislimit,1 (N=l)=(x/~8 )IR(N=2)~ 1.11fP(N=2), and matches table I if w? ~efine
~gP=4&lw(N=l~5.71~(N= l]. Like the perturbation analysis in section ~ this model precEcts very
mnilar focal lengths for N=l and N=2.

The aum fiiarnent rachs, attained at lP, is:

Thus, the maximum fdament
incident fdament intensity.

intensity (MAX{I}x/Io = ao/ati ) exhibits a linear dependence on the

A.2 Thermal Fdamentation
For the thermal conduction dominated lamentation mechanism,

[. 2
~he dielectric constant

expansion gives aC(~,x)/ax2= a(ne(~,x)/nc)/ax - -2X (n/nc)TT~(ao/a(?)) . Substituting this in
(A.2) yield.x

4=Afnl=A_ 1-N8X4(n/nc) 7T2afl a(?)
dT2 a(q)3

(A.9)

The fdamentation threshold is then:

(.4.10)



This agrees with table I if we define the tiective perturbation wavelength m xl –Z’ti- the same
relation as we have previously found.

~- d2aoT’ !)3a(z)
The solution a(~,TT2) for N=l can be ~oun by inte sting

eqn (A.9) twice. Fimt it is helpful to define the transform variables u = (8T (n/nc)vT2ao)
and y = (8Z4(n/nc)yT2ao) 2/3s/27~o. Then (A.9) can be expressed in a canonical form:

Integrating

where:

!ih=l.~
dy2 u(y)3

thistwice, we find:

!

u (y)
&y =

U du

u ~ [2(U0-U) (u-u+) (u-u-)]1/2

[11+ I+8u
a 1/2

o
u+ = #

4U:

and

1/2
= 1- [1+8u3

o1u .
4U2

o

This has the nolution:

u -u 1/2

[[ 1

y = 21/2u_ (UO-U+) ‘1/2 F ~
u -u+

o

[[ 1

1/2
u -u

+ [2 (Uo-u-) ] 1’2 E L
u -u+ ;
o

(All)

t

u -u+
o

1

.—
‘u-u

o-

U -u

-1

0+
Uo-u

(A.12)

where F(~;p) and E(~;p) are elliptic integrals of the fmt and second kind, defined as:37

4 -1/2
F(~;p) = \$ [ (1-PX2) (1-x2)]

4 1/2
E(~; p) = J& [ (1-PX2) / (1-X2)]
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in the limit u >>1 (i.e., aa~>l), eqn (A.lz) c~l ~
P

e simpliiled; using the limiting forms E(#; 1)=~,
F(~;l)=h(sec[sQm-l~] +ta[sh ~]), and u~=*(2uo) we find:

,=-&ln[[%J1’2(~+[q11’2J

The focu occurs where U(y)=n+ (this is the mtilmum
172 Transforming back, we find the focal lengthY#(2uo) .

[’le.
1/2

~
lfT = ~ (n/nc)7T

+ ~ [uO-u(y)] 1/2 (A. 13)

radius achieved by the ~llament), at

(A.14)

This ia again independent of the fdament radius, and agrees with $e sinusoidal perturbation result
(table I) if we define the Gaussian growth wavelength aa ~gT=#2 ~lfl. The mtimum intensity,
which occurs at the focus, ix

(A.15)
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Table I

Steady State Filamentation Parameters

Ponderomotive: Thermal:

~ ~Th
. ~ ; Threshold Perturbation Wavenumber:

“ FastestGrowingPerturbationWavenumber:c“ ~:=’

kgT = ~ {’~ 7T2[1->]” ‘; }“2co 0

D. ~:a; Fastest Spatial Growth Rate:

‘max
{

1/2
k=JQgT 2~onc7T2)
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Ponderomotive:

ThresholdPerturbation

B. k-; Spatial Growth Rate:

c. i?=;

Table II

1S1 Filamentation Parameters

Thermal:

Fastest Growing Perturbation Wavenumberi .

2/3
i’;= [

5n 1/2
z ;c7p’-c 1

FastestSpatialGrowthRate:

These results assume that ~1<<1, and (n/nC){7P,7T2}&2

4/7
ii== & [:C7T2T3

o

<< 1.
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over 84T., Interaction parameters are:
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line) and MAX{< I>}x/I (dotted hne) vs.
propagation distance. (b~ Contour plot of
the integrated energy distribution function,

in

IEDF(I/Io), or the fraction of laser energy
greater than intensity l/l., as a function of
laser propagation distance. Interaction
parameters are the same as in Fig. 14.
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b

<MAX{ MAX{ I} X}Z>; (ii.) (filled triangle):

position of first intensity peak

MAXl{<MAX{I}x>}~ and (open triangle):

position of largest peak MAX{<MAX{I}X>}Z;
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MAXI {M AX{CI>} ) and (box): position of

largest peak MAX~AX{<I>}x}Z; (iv.) the
dotted line shows the expected values using
the results in Table II. All simulating are

—0.5, F/20 optics, on a 200X0with n/nc it–
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plot of the integrated energy distribution
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simulation shown in I?ig. 18.

50



In

t
+4 ❑ rn

1 co

o 0 S-Id

o

h/x-I. L(3
I

o 0 ad
o 0 0
0 0
0



u.

c!0.1\
G

0.01

1

za

t
#

●

●

----------

0 500

zpto

1
L

.:

.&0.1
\u
G

0.01

1.5 1

o 0.01

I
II

1

Fb

o 800
z/A.

— 1.5

z/A.

Fig. 22 Density and temperature profiles
for laboratory plasm~ at different laaer

;:;:;$);;c:?o=’”06~m! F/10 optlc~&~~c:2~F/20

f~il; (b) ko=0.53~m, 10=ZXIO
optics and a CH foil; and (c) ko=0.25pm,
Io=SX1014W/cm2, F/20 optics and a DT
pellet.

o,8-
~

0.6:

5

0.43

L
Elo.2g

1600

52



Ao=l.06pm
35 ~

I30 a

25

d 15
f

10

5

0

1-●

●

●

-1 10

35

30

25

● o
@o ?

00
! I

o 0.2 0.4 0.6 0.8 1

14

12

10

8

6

4

2

0

5

0 k
o 0.2 0.4 0.6 0.8 1

‘RMS

AO=0.25pm
i I I I

_c ● 1
●

●

●

● 0°
0

—e. “ o

I I
o 0.2 0.4 0.6 0.8 1

‘RMS

Fig. 23 Results of filamentation of the
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